References

Alam, Moudud, Lars Ronnegard, and Xia Shen. 2019. Hglm: Hierarchical Generalized Linear Models. https://CRAN.R-project.org/package=hglm.
Alam, Moudud, Lars Rönnegård, and Xia Shen. 2015. “Fitting Conditional and Simultaneous Autoregressive Spatial Models in Hglm.” The R Journal 7 (2): 5–18. https://doi.org/10.32614/RJ-2015-017.
Anselin, L. 1988. Spatial Econometrics: Methods and Models. Kluwer Academic Publishers.
———. 1995. Local indicators of spatial association - LISA.” Geographical Analysis 27 (2): 93–115.
———. 1996. “The Moran Scatterplot as an ESDA Tool to Assess Local Instability in Spatial Association.” In Spatial Analytical Perspectives on GIS, edited by M. M. Fischer, H. J. Scholten, and D. Unwin, 111–25. London: Taylor & Francis.
Anselin, Luc. 2019. “A Local Indicator of Multivariate Spatial Association: Extending Geary’s c.” Geographical Analysis 51 (2): 133–50. https://doi.org/10.1111/gean.12164.
Anselin, Luc, Xun Li, and Julia Koschinsky. 2021. GeoDa, from the Desktop to an Ecosystem for Exploring Spatial Data.” Geographical Analysis. https://doi.org/10.1111/gean.12311.
Appel, Marius. 2022. Gdalcubes: Earth Observation Data Cubes from Satellite Image Collections. https://github.com/appelmar/gdalcubes_R.
Appel, Marius, and Edzer Pebesma. 2019. “On-Demand Processing of Data Cubes from Satellite Image Collections with the Gdalcubes Library.” Data 4 (3): 92. https://www.mdpi.com/2306-5729/4/3/92.
Appel, Marius, Edzer Pebesma, and Matthias Mohr. 2021. Cloud-Based Processing of Satellite Image Collections in R Using STAC, COGs, and on-Demand Data Cubes. https://r-spatial.org/r/2021/04/23/cloud-based-cubes.html.
Appelhans, Tim, Florian Detsch, Christoph Reudenbach, and Stefan Woellauer. 2022. Mapview: Interactive Viewing of Spatial Data in r. https://github.com/r-spatial/mapview.
Assunção, R. M., and E. A. Reis. 1999. “A New Proposal to Adjust Moran’s I for Population Density.” Statistics in Medicine 18: 2147–62.
Avis, D., and J. Horton. 1985. “Remarks on the Sphere of Influence Graph.” In Discrete Geometry and Convexity, edited by J. E. Goodman, 323–27. New York: New York Academy of Sciences, New York.
Aybar, Cesar. 2022. Rgee: R Bindings for Calling the Earth Engine API. https://CRAN.R-project.org/package=rgee.
Baddeley, Adrian, Ege Rubak, and Rolf Turner. 2015. Spatial Point Patterns: Methodology and Applications with R. Chapman; Hall/CRC.
Baddeley, Adrian, Rolf Turner, and Ege Rubak. 2022. Spatstat: Spatial Point Pattern Analysis, Model- Fitting, Simulation, Tests. http://spatstat.org/.
Bates, Douglas, Martin Maechler, Ben Bolker, and Steven Walker. 2022. Lme4: Linear Mixed-Effects Models Using Eigen and S4. https://github.com/lme4/lme4/.
Bates, Douglas, Martin Maechler, and Mikael Jagan. 2022. Matrix: Sparse and Dense Matrix Classes and Methods. https://CRAN.R-project.org/package=Matrix.
Baumann, Peter, Eric Hirschorn, and Joan Masó. 2017. “OGC Coverage Implementation Schema.” OGC Implementation Standard. https://docs.opengeospatial.org/is/09-146r6/09-146r6.html.
Bavaud, F. 1998. “Models for Spatial Weights: A Systematic Look.” Geographical Analysis 30: 153–71. https://doi.org/10.1111/j.1538-4632.1998.tb00394.x.
Benjamin, Daniel J., James O. Berger, Johannesson Magnus, Brian A. Nosek, Wagenmakers E-J, Richard Berk, Kenneth A. Bollen, et al. 2018. “Redefine Statistical Significance.” Nature Human Behaviour 2 (1): 6–10.
Benjamini, Yoav, and Yosef Hochberg. 1995. “Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing.” Journal of the Royal Statistical Society. Series B (Methodological) 57 (1): 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.
Benjamini, Yoav, and Daniel Yekutieli. 2001. The control of the false discovery rate in multiple testing under dependency.” The Annals of Statistics 29 (4): 1165–88. https://doi.org/10.1214/aos/1013699998.
Besag, Julian. 1974. “Spatial Interaction and the Statistical Analysis of Lattice Systems.” Journal of the Royal Statistical Society. Series B (Methodological) 36: pp. 192–236.
BIPM, IEC, ILAC IFCC, IUPAP IUPAC, and OIML ISO. 2012. “The International Vocabulary of Metrology–Basic and General Concepts and Associated Terms (VIM), 3rd Edn. JCGM 200: 2012.” JCGM (Joint Committee for Guides in Metrology). https://www.bipm.org/en/publications/guides/.
Bivand, R. S. 2002. “Spatial Econometrics Functions in R: Classes and Methods.” Journal of Geographical Systems 4: 405–21.
Bivand, R. S., W. Müller, and M. Reder. 2009. “Power Calculations for Global and Local Moran’s I.” Computational Statistics and Data Analysis 53: 2859–72.
Bivand, R. S., and B. A. Portnov. 2004. “Exploring Spatial Data Analysis Techniques Using R: The Case of Observations with No Neighbours.” In Advances in Spatial Econometrics: Methodology, Tools, Applications, edited by L. Anselin, R. J. G. M. Florax, and S. J. Rey, 121–42. Berlin: Springer.
Bivand, Roger. 2017. “Revisiting the Boston Data Set — Changing the Units of Observation Affects Estimated Willingness to Pay for Clean Air.” REGION 4 (1): 109–27. https://doi.org/10.18335/region.v4i1.107.
———. 2020. Why Have CRS, Projections and Transformations Changed?https://rgdal.r-forge.r-project.org/articles/CRS_projections_transformations.html .
———. 2022a. classInt: Choose Univariate Class Intervals. https://CRAN.R-project.org/package=classInt.
———. 2022b. “R Packages for Analyzing Spatial Data: A Comparative Case Study with Areal Data.” Geographical Analysis 54 (3): 488–518. https://doi.org/10.1111/gean.12319.
———. 2022c. Spdep: Spatial Dependence: Weighting Schemes, Statistics. https://CRAN.R-project.org/package=spdep.
Bivand, Roger S. 2012. After ’Raising the Bar’: Applied Maximum Likelihood Estimation of Families of Models in Spatial Econometrics.” Estadística Española 54: 71–88.
Bivand, Roger S, and Virgilio Gómez-Rubio. 2021. “Spatial Survival Modelling of Business Re-Opening After Katrina: Survival Modelling Compared to Spatial Probit Modelling of Re-Opening Within 3, 6 or 12 Months.” Statistical Modelling 21 (1-2): 137–60. https://doi.org/10.1177/1471082X20967158.
Bivand, Roger S., Edzer Pebesma, and Virgilio Gomez-Rubio. 2013. Applied Spatial Data Analysis with R, Second Edition. Springer, NY. http://www.asdar-book.org/.
Bivand, Roger S., and Gianfranco Piras. 2015. “Comparing Implementations of Estimation Methods for Spatial Econometrics.” Journal of Statistical Software 63 (1): 1–36. https://doi.org/10.18637/jss.v063.i18.
Bivand, Roger S., Zhe Sha, Liv Osland, and Ingrid Sandvig Thorsen. 2017. “A Comparison of Estimation Methods for Multilevel Models of Spatially Structured Data.” Spatial Statistics. https://doi.org/10.1016/j.spasta.2017.01.002.
Bivand, Roger S., and David W. S. Wong. 2018. “Comparing Implementations of Global and Local Indicators of Spatial Association.” TEST 27 (3): 716–48. https://doi.org/10.1007/s11749-018-0599-x.
Bivand, Roger, Virgilio Gómez-Rubio, and Håvard Rue. 2015. “Spatial Data Analysis with r-INLA with Some Extensions.” Journal of Statistical Software, Articles 63 (20): 1–31. https://doi.org/10.18637/jss.v063.i20.
Bivand, Roger, Giovanni Millo, and Gianfranco Piras. 2021. “A Review of Software for Spatial Econometrics in R.” Mathematics 9 (11). https://doi.org/10.3390/math9111276.
Bivand, Roger, and Jakub Nowosad. 2022. CRAN Task View: Analysis of Spatial Data. https://cran.r-project.org/web/views/Spatial.html.
Bivand, Roger, Jakub Nowosad, and Robin Lovelace. 2021. spData: Datasets for Spatial Analysis. https://nowosad.github.io/spData/.
Bivand, Roger, and Gianfranco Piras. 2022. Spatialreg: Spatial Regression Analysis. https://CRAN.R-project.org/package=spatialreg.
Blangiardo, Marta, and Michela Cameletti. 2015. Spatial and Spatio-Temporal Bayesian Models with r-INLA. John Wiley & Sons.
Blangiardo, Marta, Michela Cameletti, Gianluca Baio, and Håvard Rue. 2013. “Spatial and Spatio-Temporal Models with r-INLA.” Spatial and Spatio-Temporal Epidemiology 4: 33–49. https://doi.org/https://doi.org/10.1016/j.sste.2012.12.001.
Boots, B., and A. Okabe. 2007. “Local Statistical Spatial Analysis: Inventory and Prospect.” International Journal of Geographical Information Science 21 (4): 355–75. https://doi.org/10.1080/13658810601034267.
Brazil Data Cube Team. 2021. Rstac: Client Library for SpatioTemporal Asset Catalog. https://github.com/brazil-data-cube/rstac.
Breidt, F Jay, Jean D Opsomer, et al. 2017. “Model-Assisted Survey Estimation with Modern Prediction Techniques.” Statistical Science 32 (2): 190–205.
Brody, Howard, Michael Russell Rip, Peter Vinten-Johansen, Nigel Paneth, and Stephen Rachman. 2000. “Map-Making and Myth-Making in Broad Street: The London Cholera Epidemic, 1854.” The Lancet 356 (9223): 64–68. https://doi.org/https://doi.org/10.1016/S0140-6736(00)02442-9.
Brooks, Mollie E., Kasper Kristensen, Koen J. van Benthem, Arni Magnusson, Casper W. Berg, Anders Nielsen, Hans J. Skaug, Martin Maechler, and Benjamin M. Bolker. 2017. glmmTMB Balances Speed and Flexibility Among Packages for Zero-Inflated Generalized Linear Mixed Modeling.” The R Journal 9 (2): 378–400. https://journal.r-project.org/archive/2017/RJ-2017-066/index.html.
Brown, Paul G. 2010. “Overview of SciDB: Large Scale Array Storage, Processing and Analysis.” In Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, 963–68. ACM.
Brus, Dick J. 2021a. “Statistical Approaches for Spatial Sample Survey: Persistent Misconceptions and New Developments.” European Journal of Soil Science 72 (2): 686–703. https://doi.org/https://doi.org/10.1111/ejss.12988.
———. 2021b. “Statistical Approaches for Spatial Sample Survey: Persistent Misconceptions and New Developments.” European Journal of Soil Science 72 (2): 686–703. https://doi.org/https://doi.org/10.1111/ejss.12988.
Bureau International des Poids et Mesures. 2006. The International System of Units (SI), 8th Edition. Organisation Intergouvernementale de la Convention du Mètre. https://www.bipm.org/en/publications/si-brochure/download.html.
Butler, H., M. Daly, A. Doyl, S. Gillies, S. Hagen, and T. Schaub. 2016. “The GeoJSON Format.” Vol. Request for Comments: 7946. Internet Engineering Task Force (IETF). https://tools.ietf.org/html/rfc7946.
Caldas de Castro, Marcia, and Burton H. Singer. 2006. “Controlling the False Discovery Rate: A New Application to Account for Multiple and Dependent Tests in Local Statistics of Spatial Association.” Geographical Analysis 38 (2): 180–208. https://doi.org/10.1111/j.0016-7363.2006.00682.x.
Chambers, John. 2016. Extending R. CRC Press.
Chrisman, Nicholas. 2012. “A Deflationary Approach to Fundamental Principles in GIScience.” In Francis Harvey (Ed.) Are There Fundamental Principles in Geographic Information Science?, 42–64. CreateSpace, United States.
Clementini, Eliseo, Paolino Di Felice, and Peter van Oosterom. 1993. “A Small Set of Formal Topological Relationships Suitable for End-User Interaction.” In Advances in Spatial Databases, edited by David Abel and Beng Chin Ooi, 277–95. Berlin, Heidelberg: Springer Berlin Heidelberg.
Cliff, A. D., and J. K. Ord. 1973. Spatial Autocorrelation. London: Pion.
———. 1981. Spatial Processes. London: Pion.
Cliff, A., and J. K. Ord. 1972. “Testing for Spatial Autocorrelation Among Regression Residuals.” Geographical Analysis 4: 267–84.
Cobb, George W., and David S. Moore. 1997. “Mathematics, Statistics and Teaching.” The American Mathematical Monthly 104: 801–23.http://www.jstor.org/stable/2975286 .
Collins, Sarah N, Robert S James, Pallav Ray, Katherine Chen, Angie Lassman, and James Brownlee. 2013. “Grids in Numerical Weather and Climate Models.” In Climate Change and Regional/Local Responses, edited by Yuanzhi Zhang and Pallav Ray. Rijeka: IntechOpen. https://doi.org/10.5772/55922.
Cressie, N. A. C. 1993. Statistics for Spatial Data. New York:Wiley.
Csardi, Gabor, and Tamas Nepusz. 2006. “The Igraph Software Package for Complex Network Research.” InterJournal Complex Systems: 1695. https://igraph.org.
Davies, Tilman, and David Bryant. 2013. “On Circulant Embedding for Gaussian Random Fields in R.” Journal of Statistical Software, Articles 55 (9): 1–21. https://doi.org/10.18637/jss.v055.i09.
De Gruijter, Jaap, Dick J Brus, Marc FP Bierkens, and Martin Knotters. 2006. Sampling for Natural Resource Monitoring. Springer Science & Business Media.
De Gruijter, JJ, and CJF Ter Braak. 1990. “Model-Free Estimation from Spatial Samples: A Reappraisal of Classical Sampling Theory.” Mathematical Geology 22 (4): 407–15.
Diggle, P. J., and P. J. Ribeiro Jr. 2007. Model-Based Geostatistics. New York: Springer.
Diggle, P. J., J. A. Tawn, and R. A. Moyeed. 1998. “Model-Based Geostatistics.” Applied Statistics, 299–350.
Do, Van Huyen, Thibault Laurent, and Anne Vanhems. 2021. “Guidelines on Areal Interpolation Methods.” In Advances in Contemporary Statistics and Econometrics: Festschrift in Honor of Christine Thomas-Agnan, edited by Abdelaati Daouia and Anne Ruiz-Gazen, 385–407. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-73249-3_20.
Do, Van Huyen, Christine Thomas-Agnan, and Anne Vanhems. 2015a. “Accuracy of Areal Interpolation Methods for Count Data.” Spatial Statistics 14: 412–38. https://doi.org/10.1016/j.spasta.2015.07.005.
———. 2015b. “Spatial Reallocation of Areal Data: A Review.” Rev. Econ. Rég. Urbaine 1/2: 27–58. https://www.tse-fr.eu/sites/default/files/medias/doc/wp/mad/wp_tse_397_v2.pdf.
Duncan, O. D., R. P. Cuzzort, and B. Duncan. 1961. Statistical Geography: Problems in Analyzing Areal Data. Glencoe, IL: Free Press.
Dunnington, Dewey. 2022. Ggspatial: Spatial Data Framework for Ggplot2. https://CRAN.R-project.org/package=ggspatial.
Dunnington, Dewey, Edzer Pebesma, and Ege Rubak. 2022. S2: Spherical Geometry Operators Using the S2 Geometry Library. https://CRAN.R-project.org/package=s2.
Eaton, Brian, Jonathan Gregory, Bob Drach, Karl Taylor, Steve Hankin, Jon Blower, John Caron, et al. 2022. NetCDF Climate and Forecast (CF) Metadata Conventions, Version 1.10. https://cfconventions.org/.
Eddelbuettel, Dirk. 2013. Seamless R and C++ Integration with Rcpp. Springer.
Egenhofer, Max J., and Robert D. Franzosa. 1991. “Point-Set Topological Spatial Relations.” International Journal of Geographical Information Systems 5 (2): 161–74. https://doi.org/10.1080/02693799108927841.
Elhorst, J. Paul. 2010. “Applied Spatial Econometrics: Raising the Bar.” Spatial Economic Analysis 5: 9–28.
Evenden, Gerald I. 1990. Cartographic Projection Procedures for the UNIX Environment — a User’s Manual. http://download.osgeo.org/proj/OF90-284.pdf.
Evers, Kristian, and Thomas Knudsen. 2017. Transformation Pipelines for PROJ.4. https://www.fig.net/resources/proceedings/fig_proceedings/fig2017/papers/iss6b/ISS6B_evers_knudsen_9156.pdf.
file., See AUTHORS. 2022. Igraph: Network Analysis and Visualization. https://CRAN.R-project.org/package=igraph.
Fingleton, B. 1999. Spurious spatial regression: Some Monte Carlo results with a spatial unit root and spatial cointegration.” Journal of Regional Science 9: 1–19.
Fisher, Ronald Aylmer et al. 1937. The Design of Experiments. The Design of Experiments. 2nd Ed. Oliver & Boyd, Edinburgh & London.
Florax, Raymond J. G. M., Hendrik Folmer, and Sergio J. Rey. 2006. “A Comment on Specification Searches in Spatial Econometrics: The Relevance of Hendry’s Methodology: A Reply.” Regional Science and Urban Economics 36 (2): 300–308. https://doi.org/10.1016/j.regsciurbeco.2005.10.002.
Florax, Raymond J. G. M, Hendrik Folmer, and Sergio J Rey. 2003. “Specification Searches in Spatial Econometrics: The Relevance of Hendry’s Methodology.” Regional Science and Urban Economics 33 (5): 557–79. https://doi.org/10.1016/S0166-0462(03)00002-4.
Freni-Sterrantino, Anna, Massimo Ventrucci, and Håvard Rue. 2018. “A Note on Intrinsic Conditional Autoregressive Models for Disconnected Graphs.” Spatial and Spatio-Temporal Epidemiology 26: 25–34. https://doi.org/https://doi.org/10.1016/j.sste.2018.04.002.
Gabriel, Edith, Peter J Diggle, Barry Rowlingson, and Francisco J Rodriguez-Cortes. 2022. stpp: Space-Time Point Pattern Simulation, Visualisation and Analysis. https://CRAN.R-project.org/package=stpp.
Gabriel, Edith, Barry Rowlingson, and Peter Diggle. 2013. “Stpp: An R Package for Plotting, Simulating and Analyzing Spatio-Temporal Point Patterns.” Journal of Statistical Software, Articles 53 (2): 1–29. https://doi.org/10.18637/jss.v053.i02.
Gaetan, Carlo, and Xavier Guyon. 2010. Spatial Statistics and Modeling. New York: Springer.
Galton, A. 2004. “Fields and Objects in Space, Time and Space-Time.” Spatial Cognition and Computation 4.
Garnier, Simon. 2021. Viridis: Colorblind-Friendly Color Maps for r. https://CRAN.R-project.org/package=viridis.
Geary, R. C. 1954. “The Contiguity Ratio and Statistical Mapping.” The Incorporated Statistician 5: 115–45.
Gerber, Florian, and Reinhard Furrer. 2015. “Pitfalls in the Implementation of Bayesian Hierarchical Modeling of Areal Count Data: An Illustration Using BYM and Leroux Models.” Journal of Statistical Software, Code Snippets 63 (1): 1–32. https://doi.org/10.18637/jss.v063.c01.
Getis, A., and J. K. Ord. 1992. “The Analysis of Spatial Association by the Use of Distance Statistics.” Geographical Analysis 24 (2): 189–206.
———. 1996. “Local Spatial Statistics: An Overview.” In Spatial Analysis: Modelling in a GIS Environment, edited by P. Longley and M Batty, 261–77. Cambridge: GeoInformation International.
Giraud, Timothée. 2022. Mapsf: Thematic Cartography. https://CRAN.R-project.org/package=mapsf.
Gómez-Rubio, V. 2019. “Spatial Data Analysis with INLA. Coding Club UC3M Tutorial Series. Universidad Carlos III de Madrid.” https://codingclubuc3m.rbind.io/talk/2019-11-05/.
———. 2020. Bayesian Inference with INLA. Boca Raton, FL: CRC Press.
Gómez-Rubio, Virgilio. 2020. Bayesian Inference with INLA. CRC Press.
Gómez-Rubio, Virgilio, Roger Bivand, and Håvard Rue. 2015. “A New Latent Class to Fit Spatial Econometrics Models with Integrated Nested Laplace Approximations.” Procedia Environmental Sciences 27: 116–18. https://doi.org/https://doi.org/10.1016/j.proenv.2015.07.119.
González, Álvaro. 2010. “Measurement of Areas on a Sphere Using Fibonacci and Latitude–Longitude Lattices.” Mathematical Geosciences 42 (1): 49–64. https://arxiv.org/pdf/0912.4540.pdf.
Goodchild, Michael F, and Nina Siu Ngan Lam. 1980. Areal Interpolation: A Variant of the Traditional Spatial Problem. Department of Geography, University of Western Ontario London, ON, Canada.
Gorelick, Noel, Matt Hancher, Mike Dixon, Simon Ilyushchenko, David Thau, and Rebecca Moore. 2017. “Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone.” Remote Sensing of Environment 202: 18–27. https://doi.org/10.1016/j.rse.2017.06.031.
Goulard, Michel, Thibault Laurent, and Christine Thomas-Agnan. 2017. “About Predictions in Spatial Autoregressive Models: Optimal and Almost Optimal Strategies.” Spatial Economic Analysis 12 (2-3): 304–25. https://doi.org/10.1080/17421772.2017.1300679.
Gräler, Benedikt, Edzer Pebesma, and Gerard Heuvelink. 2016. Spatio-Temporal Interpolation using gstat.” The R Journal 8 (1): 204–18. https://doi.org/10.32614/RJ-2016-014.
Hahsler, Michael, and Matthew Piekenbrock. 2022. Dbscan: Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Related Algorithms. https://github.com/mhahsler/dbscan.
Halleck Vega, Solmaria, and J. Paul Elhorst. 2015. “The SLX Model.” Journal of Regional Science 55 (3): 339–63. https://doi.org/10.1111/jors.12188.
Haltiner, G. J., and R. T. Williams. 1980. Numerical Prediction and Dynamic Meteorology. New York: John Wiley; Sons.
Hand, David J. 2004. Measurement: Theory and Practice. A Hodder Arnold Publication.
Healy, Kieran. 2018. Data Visualization, a Practical Introduction. Princeton University Press. http://socviz.co/index.html.
Heaton, Matthew J., Abhirup Datta, Andrew O. Finley, Reinhard Furrer, Joseph Guinness, Rajarshi Guhaniyogi, Florian Gerber, et al. 2018. “A Case Study Competition Among Methods for Analyzing Large Spatial Data.” Journal of Agricultural, Biological and Environmental Statistics, December. https://doi.org/10.1007/s13253-018-00348-w.
Hendry, David F. 2006. “A Comment on ‘Specification Searches in Spatial Econometrics: The Relevance of Hendry’s Methodology’.” Regional Science and Urban Economics 36 (2): 309–12. https://doi.org/10.1016/j.regsciurbeco.2005.10.001.
Hepple, Leslie W. 1976. “A Maximum Likelihood Model for Econometric Estimation with Spatial Series.” In Theory and Practice in Regional Science, edited by I. Masser, 90–104. London Papers in Regional Science. London: Pion.
Herring, John et al. 2011. “Opengis Implementation Standard for Geographic Information-Simple Feature Access-Part 1: Common Architecture [Corrigendum].”
Herring, John R. 2010. “OpenGIS Implementation Standard for Geographic Information-Simple Feature Access-Part 2: SQL Option.” Open Geospatial Consortium Inc. http://portal.opengeospatial.org/files/?artifact_id=25354.
———. 2011. “OpenGIS Implementation Standard for Geographic Information-Simple Feature Access-Part 1: Common Architecture.” Open Geospatial Consortium Inc, 111. http://portal.opengeospatial.org/files/?artifact_id=25355.
Hersbach, Hans, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquín Muñoz-Sabater, Julien Nicolas, et al. 2020. “The ERA5 Global Reanalysis.” Quarterly Journal of the Royal Meteorological Society 146 (730): 1999–2049. https://doi.org/https://doi.org/10.1002/qj.3803.
Hijmans, Robert J. 2022a. Raster: Geographic Data Analysis and Modeling. https://rspatial.org/raster.
———. 2022b. Terra: Spatial Data Analysis. https://rspatial.org/terra/.
Hufkens, Koen. 2020. Ecmwfr: Interface to ECMWF and CDS Data Web Services. https://github.com/bluegreen-labs/ecmwfr.
Ihaka, Ross, Paul Murrell, Kurt Hornik, Jason C. Fisher, Reto Stauffer, Claus O. Wilke, Claire D. McWhite, and Achim Zeileis. 2022. Colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes. https://CRAN.R-project.org/package=colorspace.
Iliffe, Jonathan, and Roger Lott. 2008. Datums and Map Projections for Remote Sensing, GIS, and Surveying. Whittles Pub. CRC Press, Scotland, UK.
ISO. 2004. Geographic Information – Simple Feature Access – Part 1: Common Architecture.https://www.iso.org/standard/40114.html .
Jones, Philip W. 1999. “First- and Second-Order Conservative Remapping Schemes for Grids in Spherical Coordinates.” Mon. Wea. Rev. 127: 2204–10. https://doi.org/ 10.1175/1520-0493(1999) .
Joo, Rocío, Matthew E. Boone, Thomas A. Clay, Samantha C. Patrick, Susana Clusella-Trullas, and Mathieu Basille. 2020. “Navigating Through the R Packages for Movement.” Journal of Animal Ecology 89 (1): 248–67. https://doi.org/https://doi.org/10.1111/1365-2656.13116.
Joo, Rocío, Matthew E. Boone, Michael Sumner, and Mathieu Basille. 2021. CRAN Task View: Processing and Analysis of Tracking Data. https://cran.r-project.org/web/views/SpatioTemporal.html.
Journel, Andre G, and Charles J Huijbregts. 1978. Mining Geostatistics. Academic press London.
Karney, Charles FF. 2013. “Algorithms for Geodesics.” Journal of Geodesy 87 (1): 43–55. https://link.springer.com/content/pdf/10.1007/s00190-012-0578-z.pdf.
Kelejian, Harry, and Gianfranco Piras. 2017. Spatial Econometrics. London: Academic Press.
Knudsen, Thomas, and Kristian Evers. 2017. Transformation Pipelines for PROJ.4. https://meetingorganizer.copernicus.org/EGU2017/EGU2017-8050.pdf.
Krainski, Elias T, Virgilio Gómez-Rubio, Haakon Bakka, Amanda Lenzi, Daniela Castro-Camilo, Daniel Simpson, Finn Lindgren, and Håvard Rue. 2018. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA. CRC Press.
Kyriakidis, P. C. 2004. “A Geostatistical Framework for Areal-to-Point Spatial Interpolation.” Geographical Analysis 36: 259–89.
Laurent, Thibault, and Paula Margaretic. 2021. “Predictions in Spatial Econometric Models: Application to Unemployment Data.” In Advances in Contemporary Statistics and Econometrics: Festschrift in Honor of Christine Thomas-Agnan, edited by Abdelaati Daouia and Anne Ruiz-Gazen, 409–26. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-73249-3_21.
LeSage, J. P. 2014. “What Regional Scientists Need to Know about Spatial Econometrics.” Review of Regional Studies 44: 13–32. https://journal.srsa.org/ojs/index.php/RRS/article/view/44.1.2.
LeSage, James P., and Kelley R. Pace. 2009. Introduction to Spatial Econometrics. Boca Raton, FL: CRC Press.
Li, Xun, and Luc Anselin. 2021. Rgeoda: R Library for Spatial Data Analysis. https://CRAN.R-project.org/package=rgeoda.
———. 2022. Rgeoda: R Library for Spatial Data Analysis. https://CRAN.R-project.org/package=rgeoda.
Lieshout, M. N. M. van. 2019. Theory of Spatial Statistics. Boca Raton, FL: Chapman; Hall/CRC.
Lott, Roger. 2015. “Geographic Information-Well-Known Text Representation of Coordinate Reference Systems.” Open Geospatial Consortium.http://docs.opengeospatial.org/is/12-063r5/12-063r5.html .
Lovelace, Robin, Richard Ellison, and Malcolm Morgan. 2022. Stplanr: Sustainable Transport Planning. https://CRAN.R-project.org/package=stplanr.
Lovelace, Robin, Jakub Nowosad, and Jannes Muenchow. 2019. Geocomputation with R. Chapman; Hall/CRC.https://geocompr.robinlovelace.net/ .
Lu, Meng, Marius Appel, and Edzer Pebesma. 2018. “Multidimensional Arrays for Analysing Geoscientific Data.” ISPRS International Journal of Geo-Information 7 (8): 313.
Martin, D. 1989. “Mapping Population Data from Zone Centroid Locations.” Transactions of the Institute of British Geographers, New Series 14: 90–97.
Martinetti, Davide, and Ghislain Geniaux. 2017. “Approximate Likelihood Estimation of Spatial Probit Models.” Regional Science and Urban Economics 64: 30–45. https://doi.org/https://doi.org/10.1016/j.regsciurbeco.2017.02.002.
McCulloch, Charles E., and Shayle R. Searle. 2001. Generalized, Linear, and Mixed Models. New York: Wiley.
McMillen, D. P. 2013. Quantile Regression for Spatial Data. Heidelberg: Springer-Verlag.
McMillen, Daniel P. 2003. “Spatial Autocorrelation or Model Misspecification?” International Regional Science Review 26: 208–17.
Mennis, Jeremy. 2003. “Generating Surface Models of Population Using Dasymetric Mapping.” The Professional Geographer 55 (1): 31–42.
Meyer, Hanna, and Edzer Pebesma. 2021. “Predicting into Unknown Space? Estimating the Area of Applicability of Spatial Prediction Models.” Methods in Ecology and Evolution 12 (9): 1620–33. https://doi.org/10.1111/2041-210X.13650.
———. 2022. “Machine Learning-Based Global Maps of Ecological Variables and the Challenge of Assessing Them.” Nature Communincations 13.https://doi.org/10.1038/s41467-022-29838-9 .
Millo, Giovanni, and Gianfranco Piras. 2012. splm: Spatial Panel Data Models in R.” Journal of Statistical Software 47 (1): 1–38.
Moran, P. A. P. 1948. “The Interpretation of Statistical Maps.” Journal of the Royal Statistical Society, Series B (Methodological) 10 (2): 243–51.
Moreno, Mel, and Mathieu Basille. 2018. Drawing Beautiful Maps Programmatically with r, Sf and Ggplot2 — Part 1: Basics. https://www.r-spatial.org/r/2018/10/25/ggplot2-sf.html.
Mur, Jesús, and Ana Angulo. 2006. “The Spatial Durbin Model and the Common Factor Tests.” Spatial Economic Analysis 1 (2): 207–26. https://doi.org/10.1080/17421770601009841.
Neuwirth, Erich. 2022. RColorBrewer: ColorBrewer Palettes. https://CRAN.R-project.org/package=RColorBrewer.
O’Brien, Joshua. 2022. gdalUtilities: Wrappers for ’GDAL’ Utilities Executables. https://CRAN.R-project.org/package=gdalUtilities.
Obe, Regina O, and Leo S Hsu. 2015. PostGIS in Action. Manning Publications Co.
Okabe, A., T. Satoh, T. Furuta, A. Suzuki, and K. Okano. 2008. “Generalized Network Voronoi Diagrams: Concepts, Computational Methods, and Applications.” International Journal of Geographical Information Science 22 (9): 965–94. https://doi.org/10.1080/13658810701587891.
Olsson, Gunnar. 1970. “Explanation, Prediction, and Meaning Variance: An Assessment of Distance Interaction Models.” Economic Geography 46: 223–33. https://doi.org/10.2307/143140.
Ord, J. K. 1975. Estimation Methods for Models of Spatial Interaction.” Journal of the American Statistical Association 70 (349): 120–26.
Ord, J. K., and A. Getis. 2001. “Testing for Local Spatial Autocorrelation in the Presence of Global Autocorrelation.” Journal of Regional Science 41 (3): 411–32.
Pace, RK, and JP LeSage. 2008. “A Spatial Hausman Test.” Economics Letters 101: 282–84.
Padgham, Mark, Bob Rudis, Robin Lovelace, and Maëlle Salmon. 2017. osmdata.” The Journal of Open Source Software 2 (14). https://doi.org/10.21105/joss.00305.
Papadopoulos, Stavros, Kushal Datta, Samuel Madden, and Timothy Mattson. 2016. “The Tiledb Array Data Storage Manager.” Proceedings of the VLDB Endowment 10 (4): 349–60.
Pebesma, Edzer. 2004. “Multivariable Geostatistics in S: The Gstat Package.” Computers & Geosciences 30: 683–91.
———. 2012. spacetime: Spatio-Temporal Data in R.” Journal of Statistical Software 51 (7): 1–30. https://www.jstatsoft.org/v51/i07/.
———. 2018. Simple Features for R: Standardized Support for Spatial Vector Data.” The R Journal 10 (1): 439–46. https://doi.org/10.32614/RJ-2018-009.
———. 2021a. CRAN Task View: Handling and Analyzing Spatio-Temporal Data. https://cran.r-project.org/web/views/SpatioTemporal.html.
———. 2021b. Lwgeom: Bindings to Selected Liblwgeom Functions for Simple Features. https://github.com/r-spatial/lwgeom/.
———. 2022a. Reading Zarr Files with r Package Stars. https://r-spatial.org/r/2022/09/13/zarr.html.
———. 2022b. Sf: Simple Features for r. https://CRAN.R-project.org/package=sf.
———. 2022c. Stars: Spatiotemporal Arrays, Raster and Vector Data Cubes. https://CRAN.R-project.org/package=stars.
Pebesma, Edzer, and Benedikt Graeler. 2022. Gstat: Spatial and Spatio-Temporal Geostatistical Modelling, Prediction and Simulation. https://github.com/r-spatial/gstat/.
Pebesma, Edzer, Thomas Mailund, and James Hiebert. 2016. “Measurement Units in R.” The R Journal 8 (2): 486–94. https://doi.org/10.32614/RJ-2016-061.
Pebesma, Edzer, Thomas Mailund, Tomasz Kalinowski, and Iñaki Ucar. 2022. Units: Measurement Units for r Vectors. https://github.com/r-quantities/units/.
Pinheiro, Jose C., and Douglas M. Bates. 2000. Mixed-Effects Models in S and S-Plus. New York: Springer.
Piras, Gianfranco, and Ingmar R. Prucha. 2014. “On the Finite Sample Properties of Pre-Test Estimators of Spatial Models.” Regional Science and Urban Economics 46: 103–15. https://doi.org/10.1016/j.regsciurbeco.2014.03.002.
Plate, Tony, and Richard Heiberger. 2016. Abind: Combine Multidimensional Arrays. https://CRAN.R-project.org/package=abind.
Raim, A. M., S. H. Holan, J. R. Bradley, and C. K. Wikle. 2021. “Spatio-Temporal Change of Support Modeling with r.” Computational Statistics 36: 749–80. https://doi.org/https://doi.org/10.1007/s00180-020-01029-4 .
Raim, Andrew M., Scott H. Holan, Jonathan R. Bradley, and Christopher K. Wikle. 2020. Stcos: Space-Time Change of Support. https://github.com/holans/ST-COS.
Raoult, Baudouin, Cedric Bergeron, Angel López Alós, Jean-Noël Thépaut, and Dick Dee. 2017. “Climate Service Develops User-Friendly Data Store.” ECMWF Newsletter 151: 22–27.
Ripley, B. D. 1981. Spatial Statistics. New York: Wiley.
———. 1988. Statistical Inference for Spatial Processes. Cambridge: Cambridge University Press.
Rue, Havard, Finn Lindgren, and Elias Teixeira Krainski. 2022. INLA: Full Bayesian Analysis of Latent Gaussian Models Using Integrated Nested Laplace Approximations.
Sauer, Jeffery, Taylor Oshan, Sergio Rey, and Levi John Wolf. 2021. “The Importance of Null Hypotheses: Understanding Differences in Local Moran’s Ii Under Heteroskedasticity.” Geographical Analysis. https://doi.org/https://doi.org/10.1111/gean.12304.
Schabenberger, O., and C. A. Gotway. 2005. Statistical Methods for Spatial Data Analysis. Boca Raton/London: Chapman & Hall/CRC.
Scheider, Simon, Benedikt Gräler, Edzer Pebesma, and Christoph Stasch. 2016. “Modeling Spatiotemporal Information Generation.” International Journal of Geographical Information Science 30 (10): 1980–2008. https://doi.org/10.1080/13658816.2016.1151520.
Schlather, Martin. 2011. “Construction of Covariance Functions and Unconditional Simulation of Random Fields.” In Porcu, e., Montero, j.m. And Schlather, m., Space-Time Processes and Challenges Related to Environmental Problems. New York: Springer.
Schlesinger, Thomas, and Manuel J. A. Eugster. 2013. Osmar: OpenStreetMap and r. http://osmar.r-forge.r-project.org/.
Schramm, Matthias, Edzer Pebesma, Milutin Milenković, Luca Foresta, Jeroen Dries, Alexander Jacob, Wolfgang Wagner, et al. 2021. “The openEO API–Harmonising the Use of Earth Observation Cloud Services Using Virtual Data Cube Functionalities.” Remote Sensing 13 (6). https://doi.org/10.3390/rs13061125.
She, Bing, Xinyan Zhu, Xinyue Ye, Wei Guo, Kehua Su, and Jay Lee. 2015. “Weighted Network Voronoi Diagrams for Local Spatial Analysis.” Computers, Environment and Urban Systems 52: 70–80. https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2015.03.005.
Smith, T. E., and K. L. Lee. 2012. The effects of spatial autoregressive dependencies on inference in ordinary least squares: a geometric approach.” Journal of Geographical Systems 14 (January): 91–124. https://doi.org/10.1007/s10109-011-0152-x.
Smith, Tony E. 2009. “Estimation Bias in Spatial Models with Strongly Connected Weight Matrices.” Geographical Analysis 41 (3): 307–32. https://doi.org/10.1111/j.1538-4632.2009.00758.x.
Sokal, R. R, N. L. Oden, and B. A. Thomson. 1998. “Local Spatial Autocorrelation in a Biological Model.” Geographical Analysis 30: 331–54.
Stasch, Christoph, Simon Scheider, Edzer Pebesma, and Werner Kuhn. 2014. “Meaningful Spatial Prediction and Aggregation.” Environmental Modelling & Software 51: 149–65. https://doi.org/10.1016/j.envsoft.2013.09.006.
Stoyan, Dietrich, Francisco J. Rodríguez-Cortés, Jorge Mateu, and Wilfried Gille. 2017. “Mark Variograms for Spatio-Temporal Point Processes.” Spatial Statistics 20: 125–47. https://doi.org/https://doi.org/10.1016/j.spasta.2017.02.006.
Suesse, Thomas. 2018. “Marginal Maximum Likelihood Estimation of SAR Models with Missing Data.” Computational Statistics & Data Analysis 120: 98–110. https://doi.org/https://doi.org/10.1016/j.csda.2017.11.004.
Tennekes, Martijn. 2018. tmap: Thematic Maps in R.” Journal of Statistical Software 84 (6): 1–39. https://doi.org/10.18637/jss.v084.i06.
———. 2022. Tmap: Thematic Maps. https://github.com/r-tmap/tmap.
Tiefelsdorf, M. 2002. “The Saddlepoint Approximation of Moran’s I and Local Moran’s Ii Reference Distributions and Their Numerical Evaluation.” Geographical Analysis 34: 187–206.
Tobler, W. R. 1970. “A Computer Movie Simulating Urban Growth in the Detroit Region.” Economic Geography 46: 234–40. https://doi.org/10.2307/143141.
———. 1979. “Smooth Pycnophylactic Interpolation for Geographical Regions.” Journal of the American Statistical Association 74: 519–30.
UCAR. 2014. UDUNITS 2.2.26 Manual. https://www.unidata.ucar.edu/software/udunits/udunits-current/doc/udunits/udunits2.html.
———. 2020. The NetCDF User’s Guide. https://www.unidata.ucar.edu/software/netcdf/docs/user_guide.html.
Umlauf, Nikolaus, Daniel Adler, Thomas Kneib, Stefan Lang, and Achim Zeileis. 2015. “Structured Additive Regression Models: An R Interface to BayesX.” Journal of Statistical Software 63 (21): 1–46. http://www.jstatsoft.org/v63/i21/.
Umlauf, Nikolaus, Thomas Kneib, Stefan Lang, and Achim Zeileis. 2022. R2BayesX: Estimate Structured Additive Regression Models with BayesX. https://CRAN.R-project.org/package=R2BayesX.
Upton, G., and B. Fingleton. 1985. Spatial Data Analysis by Example: Point Pattern and Qualitative Data. New York: Wiley.
van der Meer, Lucas, Lorena Abad, Andrea Gilardi, and Robin Lovelace. 2022. Sfnetworks: Tidy Geospatial Networks. https://CRAN.R-project.org/package=sfnetworks.
Veach, Eric, Jesse Rosenstock, Eric Engle, Robert Snedegar, Julien Basch, and Tom Manshreck. 2020. “S2 Geometry.” Website. https://s2geometry.io/.
Ver Hoef, Jay M, and Noel Cressie. 1993. “Multivariable Spatial Prediction.” Mathematical Geology 25 (2): 219–40.
Vranckx, M., T. Neyens, and C. Faes. 2019. “Comparison of Different Software Implementations for Spatial Disease Mapping.” Spatial and Spatio-Temporal Epidemiology 31: 100302. https://doi.org/10.1016/j.sste.2019.100302.
Wagner, Martin, and Achim Zeileis. 2019. “Heterogeneity and Spatial Dependence of Regional Growth in the EU: A Recursive Partitioning Approach.” German Economic Review 20 (1): 67–82. https://doi.org/10.1111/geer.12146.
Wall, M. M. 2004. “A Close Look at the Spatial Structure Implied by the CAR and SAR Models.” Journal of Statistical Planning and Inference 121: 311–24.
Waller, Lance A., and Carol A. Gotway. 2004. Applied Spatial Statistics for Public Health Data. Hoboken, NJ: John Wiley & Sons.
Wang, Earo, Di Cook, Rob Hyndman, and Mitchell O’Hara-Wild. 2021. Tsibble: Tidy Temporal Data Frames and Tools. https://tsibble.tidyverts.org.
Whittle, P. 1954. On Stationary Processes in the Plane.” Biometrika 41 (3-4): 434–49. https://doi.org/10.1093/biomet/41.3-4.434.
Wickham, Hadley. 2014a. Advanced R, Second Edition. CRC Press.https://adv-r.hadley.nz/ .
———. 2014b. “Tidy Data.” Journal of Statistical Software 59 (1).https://www.jstatsoft.org/article/view/v059i10 .
———. 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer.
———. 2021. Tidyverse: Easily Install and Load the Tidyverse. https://CRAN.R-project.org/package=tidyverse.
Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019a. “Welcome to the Tidyverse.” Journal of Open Source Software 4 (43): 1686. https://joss.theoj.org/papers/10.21105/joss.01686.
———, et al. 2019b. “Welcome to the Tidyverse.” Journal of Open Source Software 4 (43): 1686. https://joss.theoj.org/papers/10.21105/joss.01686.
Wickham, Hadley, Winston Chang, Lionel Henry, Thomas Lin Pedersen, Kohske Takahashi, Claus Wilke, Kara Woo, Hiroaki Yutani, and Dewey Dunnington. 2022. Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. https://CRAN.R-project.org/package=ggplot2.
Wickham, Hadley, and Garret Grolemund. 2017. R for Data Science. O’Reilly. http://r4ds.had.co.nz/.
Wikle, Christopher K, Andrew Zammit-Mangion, and Noel Cressie. 2019. Spatio-Temporal Statistics with R. CRC Press.
Wilhelm, Stefan, and Miguel Godinho de Matos. 2013. Estimating Spatial Probit Models in R.” The R Journal 5 (1): 130–43. https://doi.org/10.32614/RJ-2013-013.
Wilke, Claus O. 2019. Fundamentals of Data Visualization. O’Reilly Media, Inc. https://serialmentor.com/dataviz/.
Wood, S. N. 2017. Generalized Additive Models: An Introduction with R. 2nd ed. Chapman; Hall/CRC.
Wood, Simon. 2022. Mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation. https://CRAN.R-project.org/package=mgcv.
Zeileis, Achim, Jason C. Fisher, Kurt Hornik, Ross Ihaka, Claire D. McWhite, Paul Murrell, Reto Stauffer, and Claus O. Wilke. 2020. colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes.” Journal of Statistical Software 96 (1): 1–49. https://doi.org/10.18637/jss.v096.i01.